- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Lunardini, Cecilia (1)
-
Plotko, Pavlo (1)
-
Winter, Walter (1)
-
Yuan_袁, Chengchao_成 超 (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We revisit ultrahigh-energy cosmic-ray (UHECR) production in tidal disruption events (TDEs) in light of recent evidence of neutrino-TDE associations. We use an isotropically emitting source-propagation model, which has been developed to describe the neutrino production in AT2019dsg, AT2019fdr, and AT2019aalc. These TDEs have strong dust echoes in the infrared (IR) range, which are potentially linked to the neutrino production. A mechanism where neutrinos originate from cosmic-ray (CR) scattering on IR photons implies CRs in the ultrahigh-energy range, thus suggesting a natural connection with the observed UHECR. We extrapolate the three TDE associations to a population of neutrino- and UHECR-emitting TDEs, and postulate that these TDEs power the UHECRs. We then infer the source composition, population parameters, and local rates that are needed to describe UHECR data. We find that UHECR data point toward a mix of light to mid-heavy injection isotopes, which could be found, e.g., in oxygen-neon-magnesium white dwarfs, and to a contribution of at least two groups of TDEs with different characteristics, dominated by AT2019aalc-type events. The required local TDE rates of , however, are more indicative of the disruption of main-sequence stars. We propose an enhanced efficiency in the acceleration of heavier nuclei that could address this discrepancy. The predicted diffuse neutrino fluxes suggest a population of astrophysical neutrino sources that can be observed by future radio neutrino detection experiments. The derived source parameters are consistent with those expected from the individual neutrino observations.more » « lessFree, publicly-accessible full text available December 1, 2026
An official website of the United States government
